

第53回 MICS ユーザー講習会

2008年9月25日(木)

タイムスケジュール

【ユーザーの部】

- 13:00~13:50 Arc 基本操作 説明
- 13:50~15:00 平面設計~Arc 応用操作 説明
- 15:00~15:30 休憩及び個別質問コーナー

最後にアンケートのご記入をお願いします。

MICS/Arc (□ // 、 部材作成ソフト)	1
羽目作成(R面	取り・面取り合口作成)	2
連続線面取	Ŋ	2
連続線面取	りの合口形状処理機能	
加工した部	材の呼び出し	
中仕切り作成(面取り絞り作成)	
連続線面取	リの絞り形状	
階段作成(抜き	取り)	11
抜き取り		11
格子付きカロー	ト扉作成(抜き取り)	
抜き取り		
中台作成(3方	向面取り・選択グループの結合)	
3方向の面	取り	
選択グルー	プの結合	
洋型作成(オフ	セット・角丸め・厚みt・抜き取り or 結合)	
ポリゴンの	作成	
オフセット		
図形削除		
ポリゴンの	角丸め(凹み)	
ポリゴンの	立体化(斜め)	
平面設計(変形	/敷地作成プログラム)	20
新規設計		20
1段目作成		
親柱・階段作	成	
厚み変更 …		
部材分割		
2 段目作成		24
2段目の階段	作成	24
高さ変更 …		25
小柱・塔婆作	成	25
合口変更		25
複数部材の	高さ変更	27
部材変更		
羽目作成		
複数部材の	厚み変更(チリ)	29
1段目・2段	目の切り替え	
石貼の作成		30
平面設計の保存	· 摹石設計の起動	
MICS/Arc そ	Ø 2	32
親柱の作成		
重複演算…		
羽目の作成		
連続線面取	り(延長)	
墓石設計角度の	測り方	

目次

<u>MICS/Arc (部材作成ソフト)</u>

MICS/Arc は, MICS/Pro で使用する部材を作成するソフトです.標準搭載されている部材の加工・編集を行い,新規にオリジナル部材を作成することができます.また,墓石設計での設計途中に部材の加工を行うことができます.

本講習会では「Arc 」の様々な機能を使用して、すでに用意してある設計データを元に、下 記の設計データを完成させます。

墓石設計で,【部】のボタンを押して左側の羽目を選択し,右クリックして【部材編集】を選択します.

自動的に Arc が起動します.

連続線面取り

【選択】ボタンで羽目を選択します.
 Arc で選択する方法は,選択したい形状の<u>線上</u>をクリックします.
 選択したら形状が赤い点線表示に変わります.

画面

2. 【フィレット】ボタンを選択します.「断面の設定」画面が表示されます.

3. 面取り形状を選択します.今回は,R=5の面取りを行いますので,「NO 02」の形状を選択し,左側の「R1」と「R2」に「5」,「分割数」に「4」が入力されていることを確認し【次へ】を押します.

 面取りする辺を選択します.下記のの辺(始点)をクリックで選択し,次に (始点の辺に連続する辺)をクリックします.R箇所は、分割数分の辺があります。1辺ずつクリックして選択することもできますが、「」・「」の線を選択すると,始点と面取りする方向が決まるので,残りの辺は枠で選択することができます.枠選択の場合は,下図の様に「1点目」をクリックすると枠が表示されるので,の辺を含む他の辺を枠で囲みます.

枠選択は何回かに分けて選択することも可能です. 拡大・縮小はマウスのホイールボタンで行います

5. 左側の天場の辺を選択できましたら、天場後ろ の辺 をクリックで選択します。

- 6. 辺を選択したら【Enter】キーを2回押します.
- 7. 「端点の設定」画面が表示され,始点側に「×」が表示されます.今回は、面取り止めや合 口加工は行いませんので、【OK】を押し面取りを実行します。

連続線面取りの合口形状処理機能

右図の辺の面取りを行います。今回は、後ろ羽目につ ながる部分の合口を作成します。

【選択】ボタンで羽目を選択します.
 Arc で選択する方法は,選択したい形状の<u>線上</u>をクリックします.
 選択したら形状が赤い点線表示に変わります.

- 2. 【フィレット】ボタンを選択します.「断面の設定」画面が表示されます.
- 3. 面取り形状を選択します.今回は,R=5の面取りを行いますので,「NO 02」の形状を選 択し,左側の「R1」と「R2」に「5」,「分割数」に「4」が入力されていることを確認し【次 へ】を押します.
- 4. 面取りする辺を選択します.下記の点線部分の辺を選択します。

5. 辺を選択したら【Enter】キーを<u>1回</u>押します.

画面左下に「(点)面取りの基準面を指定する始めの点[Enter]で自動指定」とメッセージが表示 されます.今回は,合口加工するので基準面の指定が必要です.

合口加工する際の角度と基準面の考え方

今回は,下図(羽目の平面図)の様に合口を作成しなければなりません.合口設定には,合口の 角度を指定しますが,その角度を付加する面が「基準面」です.

基準面の指定は左周り3点で指定します.

基準面を指定しない場合は,選択した線の同一平面上が基準面になります.

- 6. ~ の順(基準面の左回り)を右クリックで指定します. 基準面の指定は,頂点・線などを選択します.
 各頂点や,辺にスナップする場合は,右クリックで選択します.
- 7. 基準面を指定すると「端点の設定」画面が表示され,始点側に「×」が表示されます.今回は,終点側の「残す距離」に「35」、「合口」に「90」を設定しますので,それぞれチェックを入れ,数値を入力して【OK】を押します.

後ろ羽目の厚みが「40」で,すでに,「5」のR 面取りがされているので,残す距離は「35」に なります.

合口処理する場合に,複数の方向(Y方向とZ方向)に またがった稜線を選択すると,正常に面取り処理をする ことができない場合があります.その時は2回に分けて 面取りを実行して下さい.

40

2 方向 レ

Y 方向

8. 部材が完成しましたので×を押し,保存をして終了します.

部材情報編集が起動します.部材情報編集は目地や配置基準点を追加し,パラメーター設定を行うプログラムです.今回は設定を行いませんので×を押して閉じます.

加工した部材の呼び出し

部材情報編集画面を閉じると自動的に「墓石設計」に戻ります.

すでに,加工した部材番号が表示されていますので,【初期値】を押して加工した部材を呼び出します.

部材を呼び出したら左右の羽目を削除し,部材を「左右配置実行」で配置します.

中仕切り作成(面取り絞り作成)

中仕切りに面取り絞り形状を作成します。

羽目で行ったように、【部】のボタンを押して中仕切りを選択し,右クリックして【部材編集】 を選択します.Arc が起動します。

連続線面取りの絞り形状

- 1. 補助線の表示を OFF にして、ノードの【点】の目を閉じます。 補助線の ON / OFF ボタン
- 2. 【選択】ボタンで中仕切りを選択します。
- 【フィレット】ボタンを押し、形状を選択して寸法を入力します。
 R=5の面取りを行いますので、「NO 02」の形状を選択し、左側の「R1」と「R2」に「5」、「分割数」に「4」が入力されていることを確認し【次へ】を押します。
- 面取りする辺を選択します。今回は天場の前面の辺を全て選択します。
 1辺目と2辺目を選択すると、後の辺は枠で選択することができます。

- 5. 【Enter】を2回押します。
- 6. 「端点の設定」画面が表示されます。今回は、両端を 60 残しますので、始点側と終点側の 「残す距離」にチェックを入れ、それぞれ「60」を入力します。
- 7. 始点側と終点側に「絞り」形状を作成しますので、それぞれの「絞り」にチェックを入れ 【OK】を押します。

端点の設定 🗙	<u>< 延長 ></u> 選択した辺の,始点・終点側を延長して面 取りの指示を行う設定です.
始点側設定 終点側設定 延長 延長 0 延長 0 呼残寸距離 60 ジ割数 4 長さ 5 う0 90 90 90	<u> <u>< 残す距離 ></u> <u>< 絞り ></u> の「分割数」と「長 さ」は下図のようになります. それぞれ設定する際は, にチェックを 入れます. 長さ ① </u>

部材が完成しましたので、Arc の画面を×で保存終了し、部材情報編集も×で終了します。

墓石設計に戻りましたら、【初期値】を押して加工した部材を呼び出し、中仕切りを削除して配置します。

階段作成(抜き取り)

階段の作成を行います。

すでに階段には、階段に磨かない部分の部材を埋め込んで配置してあります。階段部材から2つの部材を抜き取り、階段を作成します。

墓石設計にて、【部】のボタンを押して階段と磨かない部分の部材、全部で3つを選択し,右ク リックして【部材編集】を選択します.Arc が起動します。

複数選択する場合は、枠で選択したい配置番号を囲むかまたは、【Ctrl】キーを押しな がら配置番号を選択します。

抜き取り

- 1. 補助線の表示を OFF にして、ノードの【点】の目を閉じます。
- 2. 【抜き取り】ボタンを押します。

3. 画面左下に「(図形)抜き出される立体」と表示されますので,階段の辺の上をマウスでク リックして指定します.図形が赤線で表示されます.

4. 画面左下のメッセージが「(図形)抜き取りに利用する立体」に変わりますので,磨かない 部分の部材を1つクリックします.1つの抜き取りができました。

- 5. 再び、画面左下に「(図形)抜き出される立体」と表示されますので,階段の辺の上をマウ スでクリックして指定します.図形が赤線で表示されます.
- 画面左下のメッセージが「(図形)抜き取りに利用する立体」に変わりますので、磨かない 部分の部材のもう1つをクリックします。
 「本】を押してシューディングまーをすると、株き取りされているのが確認できます。

【面】を押してシェーディング表示をすると,抜き取りされているのが確認できます.

部材が完成しましたので、Arc の画面を×で保存終了し、部材情報編集も×で終了します。

墓石設計に戻りましたら、【初期値】を押して加工した部材を呼び出し、階段を削除して配置し ます。

格子付きカロート扉作成(抜き取り)

カロート扉を作成します。

すでに、格子を含めて全部で9個の部材を配置してありますので、【部】のボタンを押して全ての部材を選択し,右クリックして【部材編集】を選択します.Arc が起動します。

抜き取り

扉の抜き額部分を作成します。

- 1. 補助線の表示を OFF にして、ノードの【点】と格子の目を閉じま す。
- 【抜き取り】ボタンで額をそれぞれ抜き取ります。
 シェーディング表示にすると抜き取りされているのが確認で きます

ノードブラウザ			
ノード編集(E)	ノート編集(E)		
Fink			
60	1457		
60	0101		
<u> </u>	0101	_	
6.4	8032		
6.	8032		
6.	8032		
6.	8032		
6~	8032		
6.	8032		
	占		

3. 非表示にしてあるものを全て表示しますので、ノードプラウザの【ノード編集】 - 【全ノ ードを表示】を選択します。

ードフラウザ		
ノート編集(E)		
ノートに貼り付け(1)		
ノード追加(<u>N</u>) 子ノートを追加(L)		X
削除(<u>D</u>)		21
ノード以下を非表示(H) ノード以下を表示(⊻)	し、大	\geq
全ノートを非表示①		291
全ノートを表示(<u>A</u>)	. 0.	

部材が完成しましたので、Arc の画面を×で保存終了し、部材情報編集も×で終了します。

墓石設計に戻りましたら、【初期値】を押して加工した部材を呼び出し、扉を削除して配置しま す。

中台作成(3方向面取り・選択グループの結合)

中台を作成します。

墓石設計にて、【部】のボタンを押して中台を選択し,右クリックして【部材編集】を選択します.Arc が起動します。

3方向の面取り

3方向の面取りとは、間口(X)奥行(Y)高さ(Z)の3方向にまたがった箇所の面取りをす る機能です。今回は、R=5の面取りを行います。

- 1. 補助線の表示を OFF にして、ノードの【点】の目を閉じます。
- 2. 【選択】ボタンで中台を選択します。
- 3. 【3方向フィレット】ボタンを押し、凸R面取り形状を選択して「R」に「5」を入力して 【OK】を押します。

 画面左下に「面取りする辺(左ドラッグで範囲選択)
 [CTRL]クリックで端点の個別指定[ENTER]で先へ 進む」とメッセージが表示されるので,面取りする辺を 選択します.

5. 辺を選択したら【Enter】キーを1回押します.

6. 「端点の設定」画面が表示されます.今回は、面取り止めは行いませんので、【OK】を押し 面取りを実行します。

端点の設定	X
💌 はみ出る部分	分の切断
☑ 延長 🛛	1
□ 残す距離	0
	OK キャンセル

3方向の面取りは、それぞれ、本体部分と面取り部分に立体が分かれていますので、結合をしま す。

枠選択

選択グループの結合

7. 【枠選択】ボタンで全てを囲みます。

部材が完成しましたので、Arc の画面を×で保存終了し、部材情報編集も×で終了します。

墓石設計に戻りましたら、【初期値】を押して加工した部材を呼び出し、中台を削除して配置します。

洋型作成(オフセット・角丸め・厚みt・抜き取り or 結合)

洋型を作成します。

墓石設計にて、【部】のボタンを押して中台を選択し,右クリックして【部材編集】を選択します.Arc が起動します。

ポリゴンの作成

額の元となるポリゴンを作成します。

- 1. 補助線の表示を OFF にして、ノードの【点】の目を閉じます。
- 2. 【ノード1】を選択します。

3. 【多角形】ボタンを押し、下図の を右クリックし、続いて ~ までを右クリックし最後 に【Enter】を押します。

オフセット

今作成したポリゴンを利用して額を作成します。

- 4. 洋型本体のノードを OFF にして作成したポリゴンだけを表示します。
- 5. 【オフセット】を押します.

わセット設定

オフセット距離 10

オフセット方向・

④ 内側

OK

○ 外側

キャンセル

ルトンラウザ

ノート編集(E)

0542

i ini

- 6. 画面左下に「(図形)ポリゴンの1辺か複合面上の稜線をクリックしてください」と表示されますので,作成したポリゴンの線上でクリックします.
- 『オフセット設定』ダイアログが表示されます.今回は作成したポリゴンより、左右上下に10小さいポリゴンを作成しますのでオフセット距離に「10」オフセット方向は「内側」で【OK】を押します.
- 8. オフセットのポリゴンが作成されます.

オフセットのポリゴンを作成するのに利用したポリゴン(外側)を削除します.

- 9. 【図形削除】を押します.
- 10. ポリゴンの線上をクリックすると,削除されます.

ポリゴンの角丸め(凹み) 作成したポリゴンの角を丸めます.

11.【ポリゴンの角丸め】を押します.

12.「半径入力」画面が表示されますので、半径1「10」半径2「10」、 分割数「6」を入力し、形状選択で、「凹R」を選択します。

13. 画面左下に「(図形)始めの直線」と表示されますのでの直線をクリックします.

14. メッセージが「(図形)もう一方の直線」に変わりますのでの直線をクリックします.

15. 同様の手順で残る3箇所の角も丸めます.

ポリゴンの立体化(斜め)

作成したポリゴンを,角度をつけて立体化します.

16. 【ポリゴンの立体化】を押します.

17. 画面左下に「(数値)高さまたは奥行きを数値入力して下さい.数値の前にtをつけると厚 み指定[ENTER]で2点指定による立体化」とメッセージが表示されます.「t5」と入力して [ENTER]を押します.

非在入	71 🔛
半徑1	10
半徑2	10
PRESS:	のの(# 御 秋 6
形状	MR. 💌
	(x) ++>2%

18. メッセージが「(図形)立体化するポリゴン[ENTER]で今作成したポリゴンを」と変わりま すので,ポリゴンの線上でクリックします.

ポリゴンの両側にそれぞれ5分ずつ厚みが付きます。

「t+(数字)」を入力すると,指定したポリゴンの内側と外側にそれぞれ指定した数値 分の厚みをつけます.「5」を入力すると,生成されるポリゴンの厚みは5×2=「10」 です.

19. 額が作成できましたので、洋型本体のノードを ON にして表示し、抜き額ならば抜き取りを、出額なら ば結合を行います。

部材が完成しましたので、Arc の画面を×で保存終了し、部材情報編集も×で終了します。

墓石設計に戻りましたら、【初期値】を押して加工した部材を呼び出し、洋型を削除して配置します。

平面設計(変形敷地作成プログラム)

「平面設計」で、下図のような変形敷地を作成します。また、平面設計で作成した設計データを 元に、Arc で部材の加工を行い設計データを完成させます。

新規設計

- 1. 【図面管理】-【新規設計】-【平面設計】を選択します。
- 2. 「外柵管理情報入力」画面が表示されますので、名称などを入力し、【OK】をクリックします。
- 3. 「形状選択」画面が表示されるので、作成する敷地の形状を選択します。今回は、【台形】 を選択し、【次へ】をクリックします。

形状液积			X
	に作成される形状も選択してください 一部 目的 用称 どか 内形 リーデザイン 2ウス入力		
	1880记的平台	行になる日内用の動地を作成します	
		(第3個) (第3個)	キャンセル

4. 「台形入力」画面が表示されるので、【直角のある台形(長さ指定)】を選択し、それぞれの 寸法を入力して【次へ】を押します。

NUTRIAN - UTAGASAS(ASNE) - UTAGASAS(ASNE) - BE(ASNE) - BE(ASNE) - BE(ASSNE) - BE(ASSNE) - BE(ASSNE)	Miccolagost	
CA (500 D		AB = 800 CD = 600
ADAG		DA = 900

5. 「厚み入力」画面が表示されるので、それぞれの寸法を入力して【完了】を押します。

1段目作成

親柱・階段作成

厚み変更

下図 部材の厚みを変更します。今回は180(親柱の奥行)にします。

- 1. の部材をクリックで選択します。
- 2. 右クリックして【厚み変更】を選択します。
- 3. 「厚み変更」画面が表示されるので、厚みに【180】、チリに【0】と入力して【OK】をクリ ックします。

部材分割

厚み変更した部材を3分割に分割します。

- 4. の部材をクリックで選択します。
- 5. 右クリックして【部材情報】を選択します。

228 部材情報(<u>B</u>)
■厚み変更(Q) ■高さ変更(H)
<mark>魇</mark> 頂点選択♡) <mark>鯊</mark> 敷地頂点選択(」)

- 6.「部材詳細表示」画面が表示されるので、【部材分割】を選択します。
- の部材を中央(階段)を基準に3分割しますので、「長さ指定&等分割」の「中央長さ指定」を選択し(A)「分割数」に【3】を入力して(B)「長さ」に【460】と設定します。
- 8. 設定が終了しましたら、【分割実行】(D)を押し、【OK】で画面を終了します。

部材詳細表示	
部材情報(部材分割)	
 ○ 等分割 三角形分割 ○ 前側長さ指定 ○ 前人 ○ (次方長さ指定) ○ (次方長さ指定) ○ (次方) ○ (次	分割パラメータ 「外形線基準 分割数 3 日 日 人割数 3 日 日 人割実行
<<前の部材	次の音時材>>
	OK ++>セル

9. 階段の厚みを変更しますので、 の部材を選択し、右クリックで【厚み変更】から厚み「100」 に設定します。

2段目作成

2段目を作成します。

1. 画面右上の【追加】ボタンを押します。

レイア高さ変更」画面が表示されますので、「基準高さ」に【100】、「全部材高さ」に【100】
 を入力して【OK】をクリックします。
 2段目がブルーで表示されます。

2段目の階段作成

1段目と同様に2段目の階段を作成します。

- 1. の部材を選択して厚みを【180】にします。
- 2. の部材を、右クリック【部材情報】 【部材分割】で、中央長さ指定(460)で3分割し ます。

3. の部材の厚みを変更します。厚み【90】、チリに【90】を設定し【OK】を押します。

高さ変更

- 4. の部材の高さを変更します。選択されていることを確認して、右クリックの【高さ変更】 を選択します。
- 5. 「部材高さ変更」画面が表示されるので、【50】を入力して【OK】をクリックします。

部材高さま	E.	×
部材布达	50	ОК
		キャンセル
		49200

小柱・塔婆作成

合口変更

右図の小柱 、 を作成します。

1. 【敷地頂点選択】ボタンを押します。

2. まず、左上の小柱を作成します。下図のAの頂点を何回かクリックすると、合口の形状が 変わっていきますので、小柱の形状にします。

3. 同様に右側の小柱を右図のように作成します。

4. 左側の小柱を作成します。【部材選択】ボタンを押して、 の部材 を選択します。

5. 右クリック【部材情報】-【部材分割】で、中央長さ指定(50) で3分割します。

6. 同様に右側の小柱を作成します。中央長さ指定(50)で3分割します。

7. 後ろ側に塔婆を作成します。中央長さ指定(270)で3分割します。

複数部材の高さ変更

小柱の高さを変更します。

- 8. キーボードの【Ctrl】キーを押しながら、全ての小柱部材(4個)を選択します。
- 9. 右クリック【高さ変更】を選択します。
- 10.「高さ変更」画面が表示されるので、【140】を入力して【OK】を押します。

	平面図表示 外観図表示
部材高さ変更 X 部材高さ 140 OK キャンセル	【外観図表示】で高さ方向の確認ができます。 作業をする場合は【平面図表示】をクリック して行います。

部材変更

す。

小柱部材を変更します。

- 11. 左の小柱を選択し、右クリック【部材情報】を選択します。
- 12.「部材詳細表示」画面が表示されるので、「部材情報」タブの中の【変更】ボタンを押しま

13.「角部材の選択」画面が表示されるので、下図の部材(1275)を選択して【OK】を押しま す。確認画面・部材詳細表示画面も【OK】で閉じます。

14. 同様に、下図の小柱を1つずつ設定します。

羽目作成

複数部材の厚み変更(チリ)

羽目の厚みを変更します。

- 1. キーボードの【Ctrl】キーを押しながら、全ての羽目部材(6個)を選択します。
- 2. 右クリック【厚み変更】をクリックします。
- 3. 「厚み変更」画面が表示されるので、厚み【40】チリ【5】を入力して【OK】を押します。

厚み変更	X
厚み 40 チリ 5	OK キャンセル

1段目・2段目の切り替え

1段目に切り替えて、親柱と階段の高さを変更します。

1. 画面右上の を押して、【1段目】を選択します。

2段目 💌	追加	削除
1段目 2段目 全般表示		

2. 親柱と階段の高さをそれぞれ変更します。

石貼の作成

敷石を作成します。

1. 敷石の範囲を設定しますので、【表示】 - 【石貼エリア選択】を選択します。

表示₩	"情報①	設定(
ツール バー(1)		
↓ ステータス バー(S)		
グリッド(<u>G</u>)	•
■ 「「「「」」		
∭頂点選択♡		
<mark>號</mark> 數地頂点選択(」)		
■石貼⊗		
石貼工	Jア選択(A)

2. 下図の A~Dまでを左回りでクリックして選択します。

3. 「部材サイズ」画面が表示されるので、下図のように設定して【OK】を押します。

部材サイズ		X
幅(寸法A) 奥行(寸法B)	222 116	OK キャンカル
高さ(寸法H)	10	
目地	0	
▶ ウマ目地		

平面設計の保存・墓石設計の起動

平面設計での作業が終了しましたので、墓石設計データ(mbl)に保存します。

1. 画面右上の【墓石設計】を押します。

- 2. 「保存」・「上書き」画面はそれぞれ【OK】を押します。
- 3. 「MICS データ作成設定」画面が表示されるので、下記のように設定し【OK】で墓石設計 が起動します。

部材単位	MICSデータ作成設定
座標「0」から、XYZそれぞれ移動 値を設定して配置します。	部材単位 分 ▼ OK OK OK
部材を、前部材の配置基準点で配置し ます。	• 部材を前部材基準で配置

- 4. 不要な部材(2段目の親柱部材)を削除します。
- 5. 2段目の階段を、部材変更で置き直します。1段目の階段に「10分」かぶせますので、移動Yに「-10」を設定して配置します。

<u>MICS/Arc その2</u>

親柱の作成

重複演算

親柱を加工します。

1. 【8779】部材を呼び出し、下図のように寸法を設定します。

- 2. 寸法を入力しましたら、レイヤの色を変え、平面設計で作成した親柱に重ねて<u>左右配置</u>します。
- 3. 右側の親柱2つを【部】で選択し、右クリック【部材編集】をクリックします。Arc が起動します。

5. 【重複】ボタンを押します。

- 6. 画面左下に、「(図形)複する始めの立体」と表示されるので、下図 の立体をクリックで 選択します。
- 7. 画面左下に、「(図形) 複するもう一方の立体」と表示されるので、下図 の立体をクリッ クで選択します。

部材が完成しましたので、Arc の画面を×で保存終了し、部材情報編集も×で終了します。

墓石設計に戻りましたら、【初期値】を押して加工した部材を呼び出し、親柱を削除して配置します。

左側の親柱(0101の角材)も削除します。

羽目の作成

1. 補助線の表示を OFF にして、ノードの【点】の目を閉じます。

- 2. 【選択】ボタンで羽目を選択します。
- 3. 【フィレット】ボタンを押し、形状を選択して寸法を入力します。
 R=5の2段R面取りを行いますので、「NO07」の形状を選択し、左側の「R1」と「R2」
 に「10」、「分割数」に「4」が入力されていることを確認し【次へ】を押します。
- 4. 面取りする辺を選択しますので、奥側の線をクリックで選択します。

5. 【Enter】を2回押します。

6. 始点側に×印が表示され、「端点の設定」画面が表示されます。今回面取りする辺の終点側 は、斜めになっています。斜めになっている場合は、面取りの指示を余分に設定する必要 があります。よって、終点側の【延長】にチェックを入れ、値に「10」(面取りの値以上の 数値)を設定し、【OK】ボタンを押します。

7. 同じ要領で、手前の辺も面取りを行います。

部材が完成しましたので、Arc の画面を×で保存終了し、部材情報編集も×で終了します。 墓石設計に戻りましたら、【初期値】を押して加工した部材を呼び出します。

墓石設計角度の測り方

羽目を配置します。

1. 今回の羽目は角度を付けて配置しますので、【2点指定】ボタンを押して、下図の 、 の 順に頂点を選択します。二点間の角度が画面下に表示されます。

 測定した角度を入力しますので、形状入力寸法ウィンドウの角度 Zをクリックし、 ZZ をクリックします。 角度Zに測定した数値が入力されます。

3. 角度が設定できましたら、配置されている羽目を削除 して、センター配置で作成した羽目を配置します。

残りの羽目を配置します。部材 NO「0270」を利用して、それぞれの長さを測り配置します。

A=323.727	A=310	A=119.946
B=40	B=40	B=40
H=100	H=100	H=100
R ~ R 3 =5	R ~ R 3 =5	R ~ R 3 =5
角度 Z = 102.529	角度 Z = 90	角度Z=0

最後に、塔婆(0327)部材を配置して完成です。

